LTStraipsnyje pristatoma geografinių informacinių sistemų (GIS) technologijų pagrindu veikiančio sociokultūrinių tinklų tyrimo modelio, skirto bendruomenių mobilumo tendencijoms išgryninti ir tarmės kaitai nustatyti, koncepcija. Modelio veikimas iliustruojamas nagrinėjant ryškiųjų ir blankiųjų rytų aukštaičių panevėžiškių (RAP) patarmės ypatybių kaitą. Tiriamąją medžiagą sudaro statistiniai, apklausos ir kalbiniai duomenys. Bendruomenių mobilumas vertintas remiantis socialinės infrastruktūros traukos objektais RAP plote ir gretimose šnektose. Traukos centrų įtakos kalbai koeficientai apskaičiuoti remiantis ekspertiniu vertinimu. Tinklinės pasiekiamumo analizės pagrindu sumodeliuotas ryšių tinklas tarp 223 „Lietuvių kalbos atlaso“ punktų ir 1708 traukos centrų. Kalbos kaita nustatyta remiantis 48 pateikėjų, gimusių 1888–1997 m., garso įrašų analize. Rezultatai rodo esant po 6 didžiausius traukos centrus RAP plote ir gretimose patarmėse. Socialinės infrastruktūros pasiekiamumo indeksas ir jos įtakos koeficientas statistiškai reikšmingai koreliuoja su gyventojų skaičiumi tiriamose gyvenvietėse, tačiau infrastruktūros lygis ryškaus poveikio bendrajai RAP ypatybių kaitai nedaro. Ryškesnė yra socioekonominių veiksnių ir kalbinės kaitos koreliacija – pavyzdžiui, bendruomenėse su aukštesniu išsilavinimo rodikliu yra fiksuojama didesnė RAP ypatybių kaita. Kiekybinė sociokultūrinių veiksnių ir kalbinė analizė patvirtino, kad šiaurinėje RAP dalyje vartojami variantai yra gyvybingi ir mažiau paveikūs nei esantys pietiniame RAP areale. Raktažodžiai: rytų aukštaičių panevėžiškių patarmė; sociokultūriniai tinklai; GIS technologija; geoerdvinė analizė; tarminių ypatybių kaita. [Iš leidinio]
ENThe article introduces the concept of a Geographic Information System (GIS) technology-based socio-cultural network research model, which is designed to analyse the mobility trends of communities and determine their dialectal shift. The functioning of the model is illustrated by examining the shift of the primary and tertiary phonetic differential features of the Eastern Aukštaitian of Panevėžys (EAP). The following primary and tertiary phonetic differential features were taken for analysis: stressed and unstressed diphthongs an, am; a, e, i, u in open and closed endings; o, ė, ie, uo in unstressed stems. The research material consists of statistical, geospatial, and linguistic data: (1) the mobility of communities was assessed on the basis of 2019–2021 statistical and socio-economic data provided by official reliable sources (State Enterprise Center of Registers, the Lithuanian Department of Statistics, etc.) (2) the geographical location data of social infrastructure facilities, such as educational institutions, cultural centres, museums, libraries, post offices, etc., was collected and used for influence and shortest paths assessment; (3) the coefficients of social infrastructure influence on the language were calculated on the basis of expert judgement (a survey of 20 linguists was carried out); (4) a socio-cultural network was modelled on the basis of shortest path analysis between 223 points of the Atlas of the Lithuanian Language and 1708 closest social infrastructure facilities; (5) the language shift was determined on the basis of the analysis of the audio recordings from 48 respondents born in 1888-1997. Different analysis techniques (geospatial analysis, network analysis, link analysis, correlation, etc.) for socio-cultural network research model design were adapted.The social infrastructure density in the analysed settlements was assessed using the Kernel Density geospatial analysis method. A network analysis tool “Find Closest Facilities” was used for modelling the shortest path links between the points of the Atlas of the Lithuanian Language and the closest social infrastructure facilities. On the basis of the network analysis results, the social infrastructure accessibility index for each analysed settlement was determined. The link analysis tools were used to create a link network and analyse its parameters (degree centrality and closeness centrality methods were used). The correlation between the obtained values and the analysed data of phonetic differential features was evaluated. The analysis results show that there are at least six large centres of influence in both the EAP territory (Panevėžys, Pasvalys, Biržai, Pakruojis, Radviliškis, Šeduva) and adjacent dialectal areas (Kupiškis, Kėdainiai, Anykščiai, Raseiniai, Kaunas, Šiauliai). It was calculated that the social infrastructure accessibility index (p <0.001, r = -0.387) and its coefficient of influence (p <0.001, r = 0.794) correlate statistically significantly with the number of inhabitants in settlements of the studied area. However, the general level of infrastructure in the settlements does not have a significant impact on the general shift in the differential features of EAP – a combination of a high level of infrastructure and a weak shift (Pakruojis, Šeduva), a low level of infrastructure and a weak shift (Žeimelis, Getautai), as well as a low level of infrastructure and a strong shift (Saločiai) are observed. The correlation between socio-economic factors and a linguistic shift is more pronounced. For example, in communities with a higher educational rate, a higher shift in EAP dialectal features is recorded.It was also observed that places of public gathering (for the eldest generation, those are cultural centres, museums, churches, libraries, and post offices) exert the strongest influence on the shift in the dialectal features of EAP (first, for a, e, i, u in open and closed endings; o, ė, ie, uo in unstressed stems). Quantitative analysis of socio-cultural factors and linguistic analysis confirmed that local language variants used in the northern part of EAP are viable and less affected than those in the southern EAP range. It should be emphasised that in the northern part of EAP there is a large number of social infrastructure clusters where EAP as a native variant is dominating. Accordingly, inhabitants of the southern EAP range are more often influenced by large attraction centres located in the areas of other subdialects. Keywords: Eastern Aukštaitian of Panevėžys; socio-cultural networks; GIS technology; geospatial analysis; shift of dialectal features. [From the publication]